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Relaxation of the distribution function tails for systems described by Fokker-Planck equations
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We study the formation and the evolution of velocity distribution tails for systems with weak long-range
interactions. In the thermal bath approximation, the evolution of the distribution function of a test particle is
governed by a Fokker-Planck equation where the diffusion coefficient depends on the velocity. We extend the
theory of Potapenko ef al. [Phys. Rev. E 56, 7159 (1997)] developed for power-law diffusion coefficients to
the case of an arbitrary form of diffusion coefficient and friction force. We study how the structure and the
progression of the front depend on the behavior of the diffusion coefficient and friction force for large
velocities. Particular emphasis is given to the case where the velocity dependence of the diffusion coefficient
is Gaussian. This situation arises in Fokker-Planck equations associated with one dimensional systems with
long-range interactions such as the Hamiltonian mean field (HMF) model and in the kinetic theory of two-
dimensional point vortices in hydrodynamics. We show that the progression of the front is extremely slow
(logarithmic) in that case so that the convergence towards the equilibrium state is peculiar. Our general

formalism can have applications for other physical systems such as optical lattices.
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I. INTRODUCTION

The study of Fokker-Planck equations is an important
problem in statistical mechanics and kinetic theory [1]. In the
simplest models, the diffusion coefficient is constant. How-
ever, Fokker-Planck equations with a diffusion coefficient
depending on the velocity of the particles have also been
introduced in physics. These equations usually describe the
relaxation of a “test particle” evolving in a bath of “field
particles” at statistical equilibrium when the particles interact
via weak long-range forces. In that case, the diffusion coef-
ficient is a function of the velocity of the test particle. For
example, in his Brownian theory of stellar dynamics, Chan-
drasekhar [2] describes the evolution of the velocity distri-
bution of a star in a cluster by a Fokker-Planck equation
involving a diffusion and a friction. The coefficients of dif-
fusion and friction are related to each other by an Einstein
relation and the diffusion coefficient decreases as v™> for
large velocities. These results are similar to those obtained in
plasma physics for the Coulombian interaction [3]. By using
an analogy with stellar dynamics, Chavanis [4—6] describes
the relaxation of a test vortex in a thermal bath of field vor-
tices by a Fokker-Planck equation (in position space) involv-
ing a diffusion and a drift along the vorticity gradient. The
coefficients of drift and diffusion are related to each other by
a form of Einstein relation involving a negative temperature
and the diffusion coefficient is inversely proportional to the
local shear created by the vortex cloud. For a Gaussian dis-
tribution of field vortices, the diffusion coefficient of the test

. . 2 .
vortex decreases with the distance as r%¢™" [7,8]. Similarly,
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for the Hamiltonian mean field (HMF) model, Bouchet and
Dauxois [9,10], and Chavanis et al. [11] find that the velocity
distribution of a test particle satisfies a Fokker-Planck equa-
tion with a diffusion coefficient decreasing as e for
large velocities. More generally, using the theory developed
by Landau, Lenard, and Balescu in plasma physics [12] and
implementing a thermal bath approximation, one can obtain
a general Fokker-Planck equation involving an anisotropic
diffusion coefficient depending on the velocity of the test
particle. This Fokker-Planck equation is valid for systems
with weak long-range potentials of interaction. The preced-
ing kinetic equations can be recovered as particular cases of
this general Fokker-Planck equation [7].

For Fokker-Planck equations with a variable diffusion co-
efficient, the relaxation towards the Boltzmann distribution is
slowed down, especially if the diffusion coefficient decreases
rapidly with the velocity. One consequence is that velocity
correlation functions can decrease algebraically rapidly with
time (instead of exponentially) as investigated by Bouchet
and Dauxois [10] in relation with the HMF model." They
therefore explain the observed algebraic tails of the velocity
correlations functions in terms of classical kinetic theory
without invocating a notion of “generalized thermodynam-
ics.” Here, we consider the relaxation of the system towards
equilibrium from another point of view. We focus on the
distribution function f(v,7) and study the structure and the
evolution of the front formed in the high velocity tail. Our
study is based on the approach of Potapenko et al. [15] who

n that case, the Fokker-Planck equation with Gaussian diffusion
coefficient and linear friction can be transformed into a Fokker-
Planck equation with constant diffusion coefficient and logarithmic
potential which is known to exhibit power-law correlations (see, in
particular, Appendix B of Refs. [13] and [14]).
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studied this problem in the case where the diffusion coeffi-
cient decreases algebraically with the velocity. In the present
paper, we generalize this approach to an arbitrary form of
diffusion coefficient and study how the front position v ()
and the front structure evolve with time. In the case of a
Gaussian or exponential decay of the diffusion coefficient
with the velocity, we find that the progression of the front is
extremely slow (logarithmic). This can lead to a sort of “ki-
netic blocking” or, at least, a “slowing down” of the relax-
ation. A similar confining effect was noted in the case where
the diffusion coefficient depends on the density [16,17], but
this situation (related to the theory of violent relaxation) is
more difficult to analyze since the kinetic equation is then
nonlinear.

The paper is organized as follows. In Sec. II, we discuss
different systems with long-range interactions (stellar sys-
tems, Coulombian plasmas, two-dimensional vortices, HMF
model, etc.) which are described in the thermal bath approxi-
mation by Fokker-Planck equations with a variable diffusion
coefficient. We also consider systems like optical lattices de-
scribed by Fokker-Planck equations with constant diffusion
coefficient but variable friction coefficient. In Sec. III, we
generalize the theory of Potapenko ez al. [15] for an arbitrary
form of diffusion coefficient and friction force. We provide
general equations characterizing the structure and the evolu-
tion of the front for large times. In Sec. IV, we address the
validity of our approach. In Sec. V, we consider particular
applications of our general formalism for physically moti-
vated Fokker-Planck equations. Analytical results are com-
pared with direct numerical simulations of the Fokker-Planck
equation. Particular emphasis is given to the case where the
diffusion coefficient decreases with the velocity like an ex-
ponential or a Gaussian distribution. This is the situation
relevant for one-dimensional systems like the HMF model
and for two-dimensional point vortices. Finally, in Sec. VI
we investigate a class of Fokker-Planck equations for which
our approach is exact for all times. The Appendixes provide
technical details and extensions of our main results.

II. EXAMPLES OF FOKKER-PLANCK EQUATIONS WITH
A VARIABLE DIFFUSION COEFFICIENT AND
FRICTION FORCE

We consider a Hamiltonian system of N particles interact-
ing via a weak long-range binary potential u(|r—r’'|). These
particles can be stars in stellar clusters, electrons or ions in a
plasma, point vortices in two-dimensional hydrodynamics,
particles located on a ring in the HMF model, etc. We as-
sume that the cluster is homogeneous and in a steady state
characterized by a distribution function fi(v). In general, f;
will be the statistical equilibrium state (thermal bath) but in
certain cases it can be a slowly evolving distribution func-
tion. We introduce a “test particle” and denote by P(v,?) its
velocity distribution function. Due to the interaction with the
“field particles,” the velocity distribution will change and the
test particle will acquire the distribution of the bath f(v) for
t— +o0 (see [7] for more details). The general Fokker-Planck
equation describing the relaxation (“thermalization”) of the
test particle in the bath of field particles can be written as [7]
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oP J a(k)?
— = 7(2m)¢ —fd dRkH —————— (k- (v —
ot (2m) m&v" Vi le(k,k - v)|? (k- (v=v1))
x( ° )f( P(v.0) (1)
- v v,1),
w’ )
where 7i(Kk) is the Fourier transform of u(r) and
7
k. Yo
dn av
ek,w)=1+2m%(K) | ———dv, (2)
w-k-v

is the dielectric function. This equation can be obtained from
the Lenard-Balescu equation by fixing the distribution func-
tion of the field particles f(v;,f) to its static value fo(v,)
[3,7]. This (thermal) bath approximation transforms an
integro-differential equation (Lenard-Balescu) into a differ-
ential equation (Fokker-Planck). The Lenard-Balescu equa-
tion was introduced in plasma physics for the Coulombian
potential but it can apply to other systems with weak long-
range interactions. Equations (1) and (2) can also be obtained
from the general expression of the Fokker-Planck equation
by explicitly calculating the coefficients of friction and dif-
fusion (first and second moments of the velocity increments)
using the Klimontovich approach [12]. The fact that Eq. (1)
is linear does not imply that the distribution P(v,7) is close to
equilibrium. The test particle approach is different from con-
sidering a small perturbation of the Lenard-Balescu equation
around equilibrium. In the first case, we describe the evolu-
tion of a single test particle (or an ensemble of test particles
that do not interact among themselves) in a thermal bath
while in the second case one would describe the evolution of
all the particles (the system “as a whole”) close to equilib-
rium.

If we consider that the field particles are at statistical equi-
librium with the Boltzmann distribution f,(v) ~e‘ﬁm”2/2, and
if we neglect collective effects taking |e(k,k-v)|=1 (Landau
approximation) we can rewrite the general Fokker-Planck
equation (1) in the form [7]

> li{G””(x)(iﬁZPx”)], (3)
ox

)1/2

where we have set x=(Bm/2)"*v. The diffusion coefficient

is proportional to the tensor
GH'(x) = f dRkHfre (k- 9? @)
with k=k/k, and the quantity
w\172 pm [**
fr = 3 2w J ki (k)*dk (5)
UmJo

provides an estimate of the inverse relaxation time of the test
particle toward the distribution of the bath. Here v,
=(d/Bm)""? denotes the rms velocity and p the spatial den-
sity. A more general expression of the diffusion coefficient
can be obtained by taking into account collective effects [7].
Note, however, that for v — o0 (which is a limit that we shall
be particularly interested with in the sequel), the expression
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(4) is asymptotically exact since |e(k,k-v)|—1 for |v]|
— +. Note also that for weak long-range potentials of in-
teraction for which our approach is valid, and in the Landau
approximation, the precise form of the potential i(k) only
determines the time scale of the relaxation, through Eq. (5),
not the form of the kinetic operator. Therefore, in the Landau
approximation, the expression of the diffusion tensor as a
function of the velocity only depends on the dimension of
space d.
In dimension d=3, the diffusion tensor can be written

, 1\ 1 ,
GH'=\Gi= 5G| =5 +5G.8" (6)

where G and G, are the diffusion coefficients in the direc-
tions parallel and perpendicular to the velocity of the test
particle. They are explicitly given by

/2

GH = G(x), (73)
32
G, = [erf(x) = G(x)], (7b)
with
2 1 2 1 2 e
G(x)= —/7—7—210 27 dr = ?|:erf(X) \’ :|, (8)
where
2 (Y »
erf(x) = ,——f e "dt, 9)
\NJo

is the error function. If we consider spherically symmetric

distributions, noting that dP/dx*=(1/x)(dP/dx)x* and
GH*'x"=G* we obtain
oP 119 JP
—=—=_ x2G|,(x)<— + 2Px> . (10)
at  trx“ox ox

For the gravitational potential, this Fokker-Planck equation
has been studied by Chandrasekhar in his Brownian theory
of stellar dynamics [2]. It has also been considered in plasma
physics as an approximation of the Landau equation valid for
sufficiently large times [3,15]. We note in particular that the
diffusion coefficient G(x) decreases algebraically like x~°
for x — +e.

Alternatively, if we consider one dimensional systems
(d=1), the general Fokker-Planck equation (1) simplifies into

[7]
P d
el Gl
where D(v) is given by
2
D(v)= 4772mf0(v)f dk| l(‘k(:)nz (12)

We note that the distribution function P(v,7) of the test par-
ticle relaxes towards the distribution of the bath f,(v) on a
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time scale of the order Ntj, where fj is the dynamical time
[7]. If we neglect collective effects, or consider the limit of
large velocities, we find that the diffusion coefficient is given
by

D(v) = 4mfy(v) f - dkkii(k)?. (13)
0

It is proportional to the distribution function of the bath
fo(v). In particular, if the field particles are at statistical equi-
librium with a Gaussian distribution, the diffusion coefficient
decreases like =2, This type of Fokker-Planck equations
apply for example to the HMF model [9-11] which can be
viewed as the one Fourier component of a one-dimensional
plasma (or self-gravitating system) [11]. More generally,
these Fokker-Planck equations (11) are valid for a wide class
of one-dimensional systems with weak long-range interac-
tions [7]. We note that for one-dimensional systems the
Lenard-Balescu collision term cancels out so that the distri-
bution function of the field particles f(v,) does not evolve,
i.e., df/dt=0, on a time scale of order Nt,. Since, on the
other hand, the relaxation time of a test particle toward the
distribution of the bath is of order Nt, this implies that we
can assume that the distribution of the field particles is sta-
tionary f(v,7)=f,(v) when we study the relaxation of a test
particle. This is true for any distribution function f,,(v) that is
a stable stationary solution of the Vlasov equation [7,10,11].
This is not true in higher dimensions d=2 and d=3, except
for the Maxwellian distribution f,(v), since the distribution
of the field particles f(v,r) changes on a time Nt as it re-
laxes towards the statistical equilibrium state f,(v). Further-
more, even if we assume that the distribution of the bath
fo(v) is approximately stationary, the distribution of the test
particle P(v,t) will not relax towards f,(v) for large times
except if fo(v) is Maxwellian [7].

A Fokker-Planck equation with a space dependent diffu-
sion coefficient has been introduced by Chavanis in [4—-6] to
describe the relaxation of a test vortex in a “sea” of field
vortices with vorticity profile wy(r). For an axisymmetric
distribution, the Fokker-Planck equation for P(r,f) can be
written [5,7]

e (o (14)
at rr?rr Nor ~Par ) |

with a diffusion coefficient

D(r) = In Nwy(r), (15)

8 Iz( 3]
where 3(r)=rQ(r) is the local shear created by the field
vortices [{),(r) represents the angular velocity related to the
vorticity by w(r)=(1/r)(r>Q)’]. For a vorticity profile
wo(r)=Ae""2 of the field vortices, it is easy to see that the
diffusion coefficient of the test vortex decreases like D(r)
~12e™M for r— + [7,8].

Flnally, Fokker-Planck equations with diffusion and fric-
tion coefficients depending on the velocity can occur in
many areas of physics. For example, the motion of atoms in
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a one-dimensional optical lattice formed by two counter-
propagating laser beams with linear perpendicular polariza-
tion can be described, after spatial averaging, by a Fokker
Planck equation of the form [13,14]

w9 w
E—%[D(P)——WK(P)} (16)
with
__ o _ _ D
K=-17 (plpo)* Dlp)=Do+ 17 (plpo)* (17)

For p—+%, D(p)—D, and K(p)~—ap>/p. This corre-
sponds to a logarithmic potential U(p)~ (ap?/Dy)lnp de-
fined by K(p)/D(p)=-U’(p). Equation (16) belongs to the
general class of Fokker-Planck equations that we shall study
in the sequel. The case of a logarithmic potential is treated
specifically in Sec. V C.

III. GENERAL SOLUTION OF THE PROBLEM

The various examples discussed previously prompt us to
study Fokker-Planck equations with a diffusion coefficient
and friction force depending on the velocity. In particular, we
can wonder how the distribution function f(v,#) approaches
the equilibrium distribution. This problem has been investi-
gated by Potapenko et al. [15] in the case of 3D plasmas
where the diffusion coefficient is a power law. These authors
found that the asymptotic behavior of the velocity distribu-
tion tail has a propagating wave appearance. The high veloc-
ity tail develops a front at which the distribution function
drops to zero. This front v(7) progresses with time and goes
to v/t)— +% for t— +co. The profile of the front also de-
forms itself as time goes on. However, if we use an appro-
priate system of coordinates, it can be expressed in terms of
the error function. We shall here formulate the problem in a
general setting, for an arbitrary form of diffusion coefficient
and friction force, and we shall investigate how the evolution
of the front and the profile of the high velocity tail distribu-
tion depend on the form of the diffusion coefficient.

Let us consider the Fokker-Planck equation

d 1 4
&_J;_ﬁ& [ d_lD(v)<—f+fU (v)>] (18)

where D(v) =0 and U(v) are arbitrary functions. If the fol-
lowing zero flux condition

vd_'D(v)(a—f+fU’(v)) —0 (19)
v

when v — = is fulfilled, then the stationary solutions of this
Fokker-Planck equation take the form

folv) =A™V, (20)

where A is a constant (normalization). The Fokker-Planck
equation (18) decreases the free energy F=E-S where E
=[fU(v)dv is the energy and S=—fIn fdv is the Boltzmann
entropy (the temperature has been included in the potential
U). Indeed, one has
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o (9f _
F_—ff<&v fﬁv>dv 0. 21)

Therefore, if F is bounded from below, the distribution will
converge towards the equilibrium state (20) for r— +0o0. We
want to analyze the propagation of the front in the high ve-
locity tail of the distribution function. Thus, we set

fl,t) =f(v)u(v,1). (22)

For sufficiently large times, the core of the distribution func-
tion will have reached its asymptotic value (20) so that u
=1 in that region. On the other hand, for sufficiently large
velocities, the distribution has not relaxed yet and u=0.
Therefore, we expect the formation of a front at a typical
velocity value ~v () where the function u(v,?) passes from
u=1 to u=0. On this phenomenological basis, u(v,?) is the
relevant function to consider in our “traveling front” analy-
sis. Its exact evolution is governed by

d 1 9 d
;‘t‘ = av( d-lmw—)—mwumﬁ, (23)

which is obtained from Egs. (18)—(22). If we perform the
change of variables dx/dv=1/D(v), we obtain the equiva-
lent equation

w_Fu [1D'W) d-l s sl
0t_¢9x2+{ 2D0) " v \D(U)_U(U)‘D(U)} :

(24)

where v=v(x) must be viewed as an implicit function of x. If
we introduce the velocity field

d-1
v

V(v) = \'%{ U'(v) - - %(ln D)’(v)} . (25

or, equivalently,
d
V) =- \fD(v)E{ln[vd‘le'”@)D”Z(v)]}, (26)

Eq. (24) can be rewritten as

u o Fu

ﬂt+v()x Pl (27)
The structure of this equation is clear. The right-hand side
corresponds to a diffusion and the left-hand side corresponds
to an advection by a velocity field V(v). This velocity field
(in velocity space) governs the evolution of the front. To get
a physical insight into the problem, let us first neglect the
diffusion term. The resulting equation

% N V(v)— 0 (28)

can be solved with the method of characteristics. Writing

R s (29)
“dvdt \D(v)dt’

we get
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d-1
v

< = DEIV) = D) U'(0) =~ 2 D) () |

(30)

This equation determines the evolution of the front v,(¢). In
the extreme approximation where the diffusion is neglected,
the profile of the front is given by a step function u(x,?)
=n(x-x/1)) where 7 is the Heaviside function [7(x)=1 for
x<0 and 7(x)=0 for x>0]. As we shall see, the diffusion
term will smooth out this profile.

To take into account the effect of diffusion, we return to
Eq. (27) and perform the change of variables

u(x,1) = ¢(z,1), (31)

where the function x/(t) is defined by Eq. (29). Substituting
this in Eq. (27), we obtain
i P

2T Vo) - V(uf)]‘;—f. (32)

So far, no approximation has been made so that Eq. (32) is
exact and bears the same information as the initial Fokker-
Planck equation (18). It is just written in a more convenient
form which will allow us to examine the situation in the
region of the front. Indeed, far from the front the profile is
stationary (for sufficiently long time) and Eq. (32) is auto-
matically satisfied as ¢=1 for v<vr) and ¢=0 for v
> v (1). If we consider values of the velocity that are close to
vAt), we can expand the term in brackets in Taylor series
(the validity of this approximation will be studied in Sec.
IV). Keeping only the first term in this expansion, we get

P
U (33)
where
g(1) = V' (A ))VD(v(1)). (34)

For future convenience, we set 7=2t and define h(7)
=g(7/2). Therefore, the forgoing equation becomes

ap 1P J
—(ﬁ——(—(ﬁ—h(T)z ¢) (35)

72 9z

or 2

The general solution of this equation, for an arbitrary initial
condition, is given in Appendix A. Here, we look for particu-
lar solutions of the form ¢(z,7)=®(z/x(7)). In Appendix A,
we derive the condition under which such solutions describe
the asymptotic long time behavior of the system (indepen-
dently of the initial condition) and we check that this condi-
tion is fulfilled for all the explicit examples that we shall
investigate in the following. To describe more general situa-
tions, one must use the results of Appendix A. Inserting the
ansatz ¢(z,7)=P(z/x(7)) in Eq. (35) leads to

D"+ 2xx - hx*)x®' =0. (36)

The variables of velocity and time separate provided that the
term in parenthesis is a constant that we can arbitrarily set
equal to
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2xx - hx*=2. (37)

Then, ® is the function
1 (™ 2
Ox)=— edy, (38)
N &

connected to the error function by (D(x)zé(l —erf(x)). It sat-
isfies d(-0)=1, ®(0)=1/2 and P(+»)=0 so it reproduces
the expected properties of the front (it can be seen as a
smooth step function). On the other hand, solving for y* in
Eq. (37) and taking x(1)=0, we finally obtain

X7 = 2f H-H g7 (39)
1

where H is a primitive of & with H(1)=0. The function
@(z,7)=P(z/ x(7)) with (38) and (39) is the solution of Eq.
(35) for all times, corresponding to the initial condition
¢(z,1)=7(z) where 7 is a step function. It also governs the
long time behavior of the system for a large class of initial
conditions (Appendix A).

In particular, for h(7)=7/7, we have

ap 1[F J
2_1re 1) (40)
ar 2\ dz T 02
and we recover the solution given in [15], namely
z 1= % 12
d)(Z,T):(IJ[—,—( y) . (41)
\1’2 T-T

For y=-1, a value that will frequently occur in the following
examples, we have

4

¢(z,r)=<b<71,2> for 7> 1. (42)

In terms of the function g, these analytical solutions corre-
spond to g(f)=N/t. We come back to the original variables
by setting 7=2¢ and y=2A.

IV. CONDITION OF VALIDITY

We shall now investigate in greater detail the ability of
our approach to describe the front structure. First, we note
that, within our approximations,

1
u(v(t),1) = (0) = 5 (43)

so that v(#) gives the position of the half-height profile. On
the other hand, noting that

V)~ V(o) = V()0 - 0) + V(o) (0 - 0)+

(44)

for v— v/, our approximation (33) will be valid in the range
of velocities where we can neglect the second term in the
Taylor expansion with respect of the first. This corresponds
to
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Vi) |
lv-v,< ‘ 0 (45)
In this range of velocities, our approach is accurate. Now, it
will provide a good description of the whole front if this
range |v—vf| is larger than the typical front half-width

Af(#)/2. This condition can be written

4V'(vy)
Adlr) < - (46)
s V'(vy)
Now, the front width can be estimated by
u -1
Aft) = ‘ g(vf(t),t) : (47)

Within our approximation, this can be finally rewritten as

AL = NmxOND (A1), (48)

Therefore, our approach will provide a good description of
the front structure if

w X(Zt)\D(Uf)

€=\ v WIV"(v))

<1. (49)

Since we shall be interested by the large time limit, it is
particularly important to know the asymptotic behavior of
the function €(¢) for — +oc. This has to be considered case
by case (see Sec. V).

The other assumption made in our study is that the long
time behavior of the system is described by ¢(z,7)
=d(z/ x(7)) with (38) and (39). In Appendix A, we show that
this is the case if ¢(z,1)—1 for z— -0, ¢(z,1)—0 for z
— 4 and if

Hz(7)=f eHdr — 4o (50)
1
for 7— +c. In particular, for h(7)=7y/ 7, we have

H(r)= H,(7) =

1
yIn 7, m, (51)

and

v

(=), Hy)="—"T.  (52)
- -Y

X(n)=

so that the criterion (50) is met if y<1 and not met if y
>1.

V. PARTICULAR EXAMPLES

We shall now discuss explicitly some particular examples
of physical interest and compare our theoretical predictions
with direct numerical simulations of the Fokker-Planck equa-
tion.

A. Quadratic potential

We first consider the case of a quadratic potential U(v)
=v?/2 leading to the Kramers equation
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o 1l . f
I PIRNER) R

with a variable diffusion coefficient D(v). If we assume a
zero flux condition (19), then the stationary solutions are the
Maxwellian distributions

fu(v) =A™, (54)

We now consider various forms of diffusion coefficient and
use the general theory developed in Sec. III to characterize
the front profile and its evolution. We shall only give
asymptotic expressions which are valid for large velocities
and large time. This will be implicit in all the following
calculations.

1. Power-law decay

For the diffusion coefficient

D) ~v™ a>0, (55)
we get
X~ v(a+2)/2, (563)
a+?2
v ) ~ (an)’, (56b)
and
7
gty ~———, ifa#2,
2a
d-2
t ~——, if a=2. 57
g(1) , 2 e (57)

For =2, we have assumed that the subdominant corrections
to the D(v) ~v~? behavior are of order v™ or smaller. Note
that if =2 and d=2, then g=0 and the Fokker-Planck equa-
tion can be solved exactly (see Sec. VI).

For a# 2, we find that h=+y/7 with y=2/a-1. The front
profile is given by

plard)2 _ (a,t)(a+2)/2a< -7y )1/2}
(a+2)i'? 1-(2)r! '
(58)

The criterion (50) is fulfilled only for @= 1, so that the above
function provides the correct asymptotic behavior of the so-
lution, for any initial condition, only in that case. For a <1,
it can however provide the correct asymptotic behavior if the
initial condition ¢(z,1) is a step function (see Appendix A).
Equation (58) returns the results obtained in [15]. Of course
this formula is written for a# 1, but it also provides the
expression of the solution for a=1 by passing to the limit
a— 1 yielding

u(v,t) ~d

32 _
2 (59)

u(v,t) ~ (D{W .

On the other hand, for a=2 we find that h=2(d—2)/ 7 yield-
ing x*(7)~27 and Hy(7)~ 7 for 7— +%. We find that the
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0.8

04

02
| Power-law

FIG. 1. Evolution of the front profile u(v,r) for a power-law
diffusion coefficient with @=3. For sufficiently large times, we get
a perfect agreement with the theoretical profile (58). Here and in the
following, the straight lines correspond to the numerical simulation
and the dashed lines to the theoretical prediction.

criterion (50) is satisfied and that the front profile is given by

L)
u(v,t) ~®{%}, (60)

which turns out to be consistent with Eq. (58).
Concerning the validity of this approach in relation with
the criterion (49), we have

e(t) ~A M ifa>1and a#2,
B
e ~=* ifa<l,
r In 2
)~ T
4
3w
| TT
e(t) ~ jTr'” if a=2(d #2), 61)
where A,=(\2m/8)al "V (a—1)"12 and B,

=(\s’77/8)a"”“(1—a)‘”22”“‘”2. Therefore, the condition €
<1 is always fulfilled for sufficiently large times. For sake
of illustration, we show the case a=3 for d=3 (plasmas and
stellar systems) in Figs. 1 and 2. These results are obtained
by solving numerically the Fokker-Planck equation (53)
starting from a step function: f(v,t=0)=3/4 if v<1 and
f(v,1=0)=0 if v>1 (water bag). In the simulation we have
adopted the expression (7a) of the diffusion coefficient which
reduces to Eq. (55) with =3 for v — +%. Other examples
are given in [15].

2. Gaussian decay

We now consider a diffusion coefficient of the form
D(v) ~ e, (62)

Considering the evolution of the high velocity tail, we have

PHYSICAL REVIEW E 72, 061106 (2005)

r—_F 77—

Power-law

0.5

FIG. 2. Evolution of the front position v/(r) defined by Eq. (43)
for a power-law diffusion coefficient with a@=3. For sufficiently
large times, it coincides with the theoretical prediction (56b).

v
x~f 6(7/2))’2dy. (63)
0

For large v, we obtain the relation (see Appendix B)

1
x ~ —eP0?, (64)
Y

The position of the front v,(¢) is determined by

w2 oy
f T gy ~ 2(y+ i, (65)
y

The integral can be expressed in terms of the exponential
integral E,(x). For large times, we get

2
Y

S
S ~2(y+ (66)
Yoy

To leading order, we have

Int

12
vAt) ~ (7) . (67)

We note that the evolution of the front is extremely slow
(logarithmic). On the other hand, we find that

1
g) ~~-. (68)

implying that the criterion (50) is fulfilled. In order to deter-
mine the front profile, we need first to evaluate x/). An

equivalent for 7— + is obtained by combining Egs. (64)
and (66) leading to

x,(1) ~ \/2(7—;1”. (69)

Therefore, the front profile is given by
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A ome_ JHyx D
w Y

u(v,t) ~d \27 . (70)

Concerning the validity of this approach in relation with the
criterion (49), we find that 6(t)—>41¢[777//('y+1)]”2 for t—
+0o so that our approximations are marginally valid: e(z)
does not go to zero but it does not diverge with time neither.

We have performed numerical simulations of the Fokker-
Planck equation (53) with the diffusion coefficient (62) with
y=1/2. As discussed in Sec. II, this equation describes the
evolution of a “test particle” in a bath of “field particles” at
statistical equilibrium (with Maxwellian distribution function
f0~e‘”2/2) for one-dimensional systems (d=1) with long-
range interactions such as the HMF model. In Fig. 3, we
show the “short” time evolution of the distribution function
f(v,1) starting from a step function: f(v,0)=1/3 for v<3
whose width is larger than the thermal speed v,,=1 (dashed
line). Since D(v) rapidly decreases with the velocity for v
>uv,,=1, the high velocity component of the initial condition
takes time to be depleted. Indeed, the core of the distribution
rapidly reaches a Maxwellian distribution while the tail
keeps the memory of the initial condition and remains flat for
relatively long times. For the parameters of the simulation,
this can even create a nonmonotonic distribution for short
times as shown in Fig. 3 (see Appendix C).

In Fig. 4 we show the evolution of the normalized distri-
bution function u(v, ) for short and large times. In that case,
we start from an initial condition: f(v,0)=1 if v<1 and
f(v,0)=0if v>1. In Fig. 5, we focus on the evolution of the
front for large times and we compare the result of the nu-
merical simulation with the theoretical prediction. In Fig. 6,
we compare the evolution of the front displacement v(r)
with the theoretical prediction. The numerical results are in
fair agreement with the theory although its domain of valid-
ity was expected to be marginal in that case according to our

0.8

T :
Gaussian

0.6

0.2

FIG. 3. Short time evolution of the distribution function f(v,?)
for a Gaussian diffusion coefficient. This figure shows the slow
depletion of the high velocity tail due to the rapid decrease of the
diffusion coefficient for v>v,=1.

PHYSICAL REVIEW E 72, 061106 (2005)

2 . , . I .

1=0.01 Gaussian

u(v,t)

FIG. 4. Evolution of the normalized distribution function u(v 1)
for a Gaussian diffusion coefficient for short and large times. For
short times the normalized distribution function forms a bump
which slowly disappears as the core of the distribution becomes
Maxwellian. For large times the function u(v,f) has a front
structure.

estimates. This fair agreement may be explained by the rela-
tively small value of E(+°O)=:T(7T/3)l/220.255. .. for vy
=1/2 even if this parameter does not strictly tends to zero for
1— +o. We note that for 7— +° and v<vA1), we have u
~®(=/(y+1)/y)=DP(—V/4€) which has not converged to
u=1 precisely because €# 0. However, for e(+%)=0.255...,
we find that u=0.993 which is very close to one.

In relation with the HMF model, we would like to recall
that the present approach describes the relaxation of a given
test particle immersed in a bath of field particles at statistical
equilibrium. The relaxation is due to finite N effects (corre-
lations). This does not describe the evolution of the distribu-
tion function of the system as a whole. The clearest reason is
that the Fokker-Planck equation (1) resulting from a thermal
bath approximation does not conserve energy contrary to the
microcanonical evolution of a Hamiltonian system. In the

1

0.8

0.6

u(t,v)

04

0.2
Gaussian

FIG. 5. Evolution of the front profile u(v,r) for a Gaussian
diffusion coefficient. For sufficiently large times, we get a fair
agreement with the theoretical profile (70) although the validity of
our approach was expected to be marginal in that case.
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FIG. 6. Evolution of the front position v(t) defined by Eq. (43)
for a Gaussian diffusion coefficient. For sufficiently large times, we
get a fair agreement with the theoretical prediction (66).

collisionless regime, the distribution function f(6,v,r) of
the HMF model is governed by the Vlasov equation coupled
to the mean-field potential P(6,1)=—(k/27)[cos(0
—0")f(6',v',1)d0'dv’ produced by the particles. The Vlasov
equation can experience a process of violent relaxation and
converge toward a quasistationary state (QSS) on the coarse-
grained scale [18]. Some dynamical theories of violent relax-
ation [16] based on a maximum entropy production principle
(MEPP) propose to model the evolution of the coarse-
grained distribution function by a generalized Fokker-Planck
equation of the form (for a water-bag initial condition)

of  of o 9 af - o
é}vé_v¢£=a;Dwmﬁ{£+ﬁmﬂ%—ﬂ4 ,
(71)

where B(t) evolves so as to conserve energy (see [16] for
more details). An important point is that the diffusion coef-
ficient is not constant but is related to the correlations of the
fine-grained fluctuations. It can depend on position, velocity
and time and can be very small in certain regions of phase
space and for large times. The vanishing or smallness of the
diffusion coefficient can slow down the dynamics and lead to
a confinement of the distribution function in phase space
which may be qualitatively similar to what is shown in Fig.
3. However, the dynamical equation (71) and its physical
interpretation are different from Eq. (11), so that their simi-
larity is, at most, an analogy.

3. Exponential decay

For the diffusion coefficient
D) ~ e, (72)
we get

X~ %ewz)v. (73)
Y

The evolution of the front is given by

PHYSICAL REVIEW E 72, 061106 (2005)

T T T T T T T

— T 1
=20 £=50 =100

T
t=10

Exponential

FIG. 7. Evolution of the front profile u(v,#) for an exponential
diffusion coefficient. For sufficiently large times, we get an excel-
lent agreement with the theoretical profile (78).

e"r
— ~ . (74)
Yoy
To leading order, we have
1
Uf(f) ~ —Int, (75)
’ Y

which shows that the progression of the front is again very
slow. We also have

o) ~ - 2% (76)

implying that the criterion (50) is fulfilled. In order to deter-
mine the front profile, we need first to evaluate x/r). An
equivalent for t— +o0 is obtained by combining Egs. (73)
and (74) leading to

x/(t) ~ %(t In )2, (77)

However, since the evolution with time is slow, we shall
work  with the more precise expression  x(1)
~(2/v)(t1In(tIn t))"/> obtained by keeping the term of next
order. With this expression, we find that the front profile is
given by

—e2v _ ( 12
—e t1In(t In 1))
u(v,t) ~ O \2 7

Concerning the validity of this approach in_relation with
the criterion (49), we find that e(r) ~ (y/8)\2m(In £)~"? for
t— +20 so that our approximations are valid for sufficiently
large times. Note that the decay is slow with time (logarith-
mic) but the prefactor (y/8)v2mw=0.313... is relatively small
(for y=1) which can explain the very good agreement with
the numerics even for moderate time scales. Figures 7 and 8
are obtained by solving the Fokker-Planck equation (53) with
the diffusion coefficient (72) with y=1, starting from an ini-
tial condition: f(v,0)=1 if v<<1 and f=0 if v> 1.

(78)
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FIG. 8. Evolution of the front position vr) defined by Eq. (43)
for an exponential diffusion coefficient. For sufficiently large times,
we get an excellent agreement with the theoretical prediction (74).

4. Stretched exponential

For the diffusion coefficient

D) ~e™’, §>0, (79)
we get
v )
X~ f ey (80)
0

We shall briefly discuss how the results depend on the value
of 8. A more detailed analysis can be carried out as in the
previous sections where the cases d=1 and 6=2 are explic-
itly considered.

For 6<2, the front evolution is given by

5
em"r
— ~ ot (81)
Yoy

To leading order, we get

Int 1/6
vf(t) ~ (—) . (82)
Y
On the other hand,
()~ (83)
& 2t

implying that the criterion (50) is fulfilled. Concerning the
validity of this approach in relation with the criterion (49),
we find that

\Tw@( In t)—@—&vw

e(r) ~ s 5

) (84)

so that the criterion is satisfied for sufficiently large times
(but slowly).
For 6>2, the front evolution is given by

PHYSICAL REVIEW E 72, 061106 (2005)

S5
err 1
ey s
(w;s)%&l)/& 2y2 &5t (85)
To leading order, we get
Int 1/6
vAt) ~ (7) . (86)
On the other hand,
1
g(t) ~ - i (87)

implying that the criterion (50) is fulfilled. Concerning the
validity of this approach in relation with the criterion (49),
we find that e— \#@/4 so that this approach is marginally
valid.

B. Linear potential

We now consider the case of a linear potential U(v)=yv
leading to a Fokker-Planck equation of the form

o 1 oal ., (&f )
—=— D - . 88
a v {U W\, + 88)

The stationary solution is
f.(v)=Ae™ . (89)

For a diffusion coefficient decreasing algebraically with the
velocity

D) ~v™ a>0, (90)

we get
s pl@s2)2, v,(t) ~ [(a+ D)ye]eD - (91)

a+2 ’
and
a 1

)~ — -, 92
8(®) 2a+ 1)t ©2

implying that the criterion (50) is fulfilled. We also find that
e(r) x 2@+ D] 5o that the validity criterion of our approach
is always fulfilled for sufficiently large times.

C. Logarithmic potential

In this subsection, we consider the case of a constant dif-
fusion coefficient D(v)=1 and a logarithmic potential U(v)
=(a/2)In(1+v?) in d=1 leading to a Fokker-Planck equation
of the form

od_o(d, v _
0t_au<au+af1+v2)‘ ©3)

This type of Fokker-Planck equations arises in the study of
optical lattices [13,14]. The stationary solution of this equa-
tion is of the form
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FIG. 9. Evolution of the front position v/(r) for a logarithmic
potential with a=10. We get a fair agreemment with the Lambert
function.

A

2)01/2 .

A0 oY

f e(v) =
This is similar to a Tsallis distribution with g=(a-2)/a [19].
However, it arises here from a linear Fokker-Planck equation
(associated with the Boltzmann entropy) with a logarithmic
potential, instead of a nonlinear Fokker-Planck equation (as-
sociated with the Tsallis entropy) with a quadratic potential
[20-22]. The distribution (94) is normalizable provided that
a>a.;=1. The case @=2 corresponds to the Lorentzian.
The evolution of the front v4(#) satisfies

dv vy
Ef: 1+v% ©3)
Uy

2
The exact solution is given by v?e”«f:ez"‘”c where C is a

constant of integration. It can be written v%(t):W(eM”C)
where W(x) is the Lambert function which is solution of the
transcendental equation W(x)exp[ W(x)]=x. For t— +o, we
get vA1)~(2an'? and g(1)~-1/(21). Therefore, the front
profile is given by

-\2ar
u) , 06)

’/_
\2t

u(v,t):@(

for large times. Concerning the validity of our approach with
respect to the criterion (49), we find that e— (7/4a)"? for
t— +% so that our approach is marginally valid. The theo-
retical prediction is not very good for a=2 but the agreement
improves for large values of a> a,;,=1 for which € is re-
duced. In particular, the results of numerical simulations per-
formed with =10 are shown in Figs. 9 and 10. Concerning
the evolution of the front, we find a good agreement with the
Lambert function except that the measured exponent in Fig.
9 is ~20.6 instead of 2a=20. Therefore, the front increases a
little bit faster than the theoretical prediction. This is con-
firmed in Fig. 10 which shows the evolution of the front
profile. We note, however, the relatively good agreement be-
tween direct numerical simulation and theory. The slight dis-
crepency is due to the finite value of e=0.28.

PHYSICAL REVIEW E 72, 061106 (2005)

1

Logarithmic potential

30 40

FIG. 10. Evolution of the front profile u(v,#) for a logarithmic
potential with a=10.

D. Fokker-Planck equations associated with one-dimensional
systems with long-range interactions

We now consider the case of Fokker-Planck equations de-
scribing one dimensional systems with long-range interac-
tions. In that case, the diffusion coefficient D~ f,(v) for v
—+ and the potential U(v)=-In f,(v) are expressed in
terms of the distribution of the bath f;(v). The corresponding
Fokker-Planck equation can be rewritten as (see Sec. II)

of a( Jf df0>

Pt Pl e ©7)

ot ov

The general relations obtained in Sec. III take the simpler
forms

dx 1 3 fol)  dvy 3,
dv o) V) 2\fov) dr 2/owr-

(98)

The case where fy(v) is a Gaussian distribution (thermal
bath) has already been studied in Sec. V A 2. We shall con-
sider other examples where f,(v) is not necessarily the sta-
tistical equilibrium state. This description still makes sense if
fo 1s a stable stationary solution of the Vlasov equation be-
cause the relaxation of the system as a whole is slower than
the relaxation of a test particle in a fixed distribution.

1. Exponential distribution

For the exponential distribution
fo~e™, (99)

we obtain

2 1
x~ =2, vy~ — 1n<—y2t> , (100)
Y

Y

and
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1
) ~—-—, 101
g(1) » (101)
implying that the criterion (50) is fulfilled. The front profile
is given by
12
e('y/Z)U _ (g,yZI>
(v,1) ~ D[ \2 2 (102)
ul\v,i) ~ v
1”2

Concerning the validity of this approach in relation with
the criterion (49), we find that 6—>}1(7T/3)1/220.256... for
t— + so that our approximations are marginally valid and
are accurate since e is relatively small.

2. Power-law distribution

For the power-law distribution
fo~v™7, (103)

we obtain

X~

e 3 1/(a+2)
a+2)/2

, )~ | — +2)t 5
a+2’ o) ~ | jela+2)

(104)

and
(1) L (105)
§ 2t

implying that the criterion (50) is fulfilled. The front profile

is given by
(a+2)/2 3
v - Ea(a +2)t

(a+2)"

u(v,1) ~ d| \2 (106)

Concerning the validity of this approach in relation with the
criterion (49), we find that e%é(a+4) Vam/3a(a+2) for ¢
— +0 5o that our approximations are marginally valid.

VI. A CLASS OF EXACTLY SOLVABLE
FOKKER-PLANCK EQUATIONS

In this section we give a class of Fokker-Planck equations
(18) for which our approach turns out to be exact. More
precisely, we derive a relationship between D(v) and U(v)
under which the corresponding Fokker-Planck equation (18)
can be exactly solved. First, we recall that Egs. (18) and (32)
are equivalent and no approximation has been made in the
derivation of Eq. (32) from Eq. (18). However to pass from
Eq. (32) to Eq. (33) for a general velocity field V(v), we have
made an approximation and have assumed that the concerned
velocities are close enough to the position of the front v (7).
This is in fact the only approximation in the approach devel-
oped above. We now look for a situation where such an
approximation is exact. This is the case if V(v)=Ax+B
where A and B are arbitrary constants. Using

PHYSICAL REVIEW E 72, 061106 (2005)

L V)=V )\D@) = A, (107)
dx

and replacing V by its expression (25), we equivalently get

\%i<\%[ U'(v) - a-1_ l(ln D)’(v)D =A.
dv v 2

(108)
Defining R(v)= \’W’ we obtain

ko] (- -k |- 09

If U(v) and R(v)=+/D(v) satisfy Eq. (109), as discussed in
Appendix D, we can use the results of Appendix A with
g(r)=A to obtain exact solutions of Eq. (18) for all times.

Let us make these solutions more explicit. First of all, for
h(7)=A, we have

H(D=A(r-1), H,(1)=e WD, (110)

2 1
2 = A(m1) _ 1 H =—(1=- —-A(m1) )
X (7) A(e ), Hy(7) A( e )

(111)

We note that the criterion (50) is met only for A<0. On the
other hand, integrating
dx

—=V(v)=Ax+B,

" (112)

with x/(1/2)=0, we get

B
x A1) = Z(e“’z)@f-‘) -1). (113)

Then, substituting in Eq. (A27), we obtain the general solu-
tion

1

u(v,t) = —fF—7——=
/2?77(1 _ e—2At)

+00
X f el = BN = D] =PI 1= () ) gy

(114)

where we have taken the origin of times at t=0. If we start
from a step function u(x,0)=7(x), the above expression re-
duces to

B

x—Z(eA’— 1)

u(v,t)=d 2— (115)
Z(p2A1_ 12
Ve
On the other hand, for A=0, we get
h(T)ZO, H(T):()’ H](T):ls HZ(T)ZT—],

(116)
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B
X(D=2r=1), xl)="(2t-1). (117)
The general solution is
1 M )
u(v,t)=—— e~ BTy 0)dy,  (118)
Vamt) _e

and if we start from a step function u(x,0)=7(x), we get

u(v,t):@(Jc_—Bt)

2 (119)

We recall that the above profiles are the exact solutions of
the Fokker-Planck equation (18) when the functions U(v)
and D(v) satisfy the differential equation (109). Let us ex-
amine some particular cases. If A=0, Eq. (109) can be inte-
grated at once leading to the relation

2 +Oc d-1 2w
D(v)=B f whlemUMgy m
U

For the wide class of potentials U(v) satisfying the following
condition:

(120)

(d- 1)@ —-U"(v) < U (v)?

(121)
for large v, the behavior of the diffusion coefficient at infin-
ity is given by

D(v) ~ (122)

C
U/ (0)2 :
In particular, when U(v)=v?/2 the diffusion coefficient D(v)
behaves like C/v? for v — + and when U(v)= v it tends to
a constant. Note that condition (121) is not only satisfied by
any nonconstant polynomial, but also by potentials U(v) that
dominate In(v) for large velocities, as for instance U(v)
=[In(v)]%, with @>1. Note finally that for v —0, the diffu-
sion coefficient behaves like 1/v2¢~!) which is divergent ex-
cept for d=1.

In the case of a quadratic potential U(v)=v?/2, the inte-
gral in Eq. (120) can be expressed in terms of the error
function. There is a simplification in d=2 leading to D(v)
=1/v?. This is precisely the case that we have found in Sec.
V A. In that case, we have x=v?/2 so that Eq. (118) can be
explicitly written in terms of v. Inversely, for D(v)=1/v?
and g=A, we find from Eq. (109) that U(v)=(A/8)v*
+(B/2)v*+(d-2)Inv so for this type of potential the solu-
tion of (114) applies with x=v?/2. In the case of a linear
potential U(v)=yv, the integral in Eq. (120) can be ex-
pressed in terms of the incomplete Gamma function. There is
a simplification in d=1 leading to D(v)=1. In that case, we
have x=v so that Eq. (118) can be explicitly written in terms
of v. Inversely, for D(v)=1 and g=A, we find from Eq. (109)
that U(v)=(A/2)v>+Bv+(d-1)ln v so for this type of poten-
tial the solution of (114) applies with x=v.

For d=1, D(v)=1 and U(v)=(A/2)v>*+Bv, we have
V(v)=Ax+B with x=v and we are in the situation mentioned
above. If we take f(v,0)=8(v—v,) and recall that u(v,r)

PHYSICAL REVIEW E 72, 061106 (2005)

=f(v,t)/f,(v), Eq. (114) gives after simplification
1

f(v7t) =
I%T(l _ e—ZAI)

X e 1A2(1=e)][v - vge™ + (BIA)(1 - 40 (123)

In particular, for B=0 and A=1, we recover the well-known

solution [1]:

1 —H2 =2t

fv,1) = =—==¢"V 00 ) RU=¢T) " (124)
V27(1 = e

In that case, (v)(t)=vqe™". Alternatively, for A=0 and B=1,

we get

f(v,t) — Le_(v —vg+ r)2/4z-

(125)
V4t

In that case, (v)(f)=v,—t. Note that there is no normalizable
stationary state for the Fokker-Planck equation (18) when
U(v)=Bv so that f(v,?) tends to zero for large times and
spreads so as to conserve the total mass. By contrast, when
A #0, the distribution function relaxes towards f,(v) for ¢
— 4+, From Eq. (123), we can obtain the time evolution of
the distribution function for any initial condition fy(v)
=f(v,0) by multiplying Eq. (123) by fy(v,y) and integrating
OVEr V).

Note finally that for d> 1, the velocity v=|v| is restricted
to positive values so that the preceding results must be
slightly revised. The idea is to extend f(v,7) by parity to
negative values of v. We replace D(v), U(v), and v*! in Eq.
(18) by D(|v|), U(|v]), and |v|¢~!. With this extension, Eq.
(18) is invariant by the transformation v — —v. Therefore, if
f(v,1,) is even, f(v,) will remain even for all times and its
values for v =0 correspond to those of the distribution func-
tion that is a solution of the original Eq. (18). Thus we can
apply the preceding results with almost no modification. We
note however that since V(v) and x(v)=] (”)dw/\,/m are
odd, the case V(v)=Ax+B is only possible if B=0. By con-
trast, in d=1, we can consider cases where f(v,7), D(v), and
U(v) have no special parity.

VII. CONCLUSION

In this paper, we have developed a general formalism to
characterize the evolution of the distribution function tail for
systems described by a Fokker-Planck equation with a diffu-
sion coefficient and a friction force depending on the veloc-
ity. Our analytical results give good agreement with the nu-
merics even in cases where the validity of our approach is
marginal. When the diffusion coefficient decreases algebra-
ically with the velocity, the progression of the front is also
algebraic. When the diffusion coefficient decreases like an
exponential or like a Gaussian, the progression of the front is
logarithmic. The high velocity component of the distribution
function keeps the memory of the initial condition for a long
time and is slowly depleted. There are several applications of
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our formalism to, e.g., stellar dynamics, plasma physics, vor-
tex dynamics, the HMF model, optical lattices, etc. In future
works, we shall study more specifically the dynamics of
point vortices and investigate the evolution of the front pro-
file and the time evolution of the correlation functions [8].

APPENDIX A: GENERAL SOLUTION OF EQ. (35)

In this appendix, we provide the general solution of the
PDE,

a(f _Ze_ h(T)z%,

P> (A1)

for an arbitrary initial condition ¢;(z)=¢(z,1). Taking the
Fourier transform of Eq. (A1) with the conventions

n . n o d
#(z) = f NOeEde, PO = J ¢<z>e-’fﬁ, (A2)

and using the relation

za—(b=fzi§$(§)eigzd§

0z
- f QO (e )ae
23
Jd_ . ;
—_ | = i&z
= f a§[§¢(§)]e d¢, (A3)
we get
22 2 () - 52]¢+h(r)§—(§. (A4)
We introduce the change of variables
[, 1) = d(H\(Dy,7), E=H(7)y (AS)
and choose the function H,(7) such that
H(D b
H(n 2 (A©)

Substituting Eq. (A5) in Eq. (A4), we find that f(y, 7) satis-
fies

af 1
=+ Z[H{(9)y* - h(D]f=0. (A7)
or 2
Let H(7) be the primitive of h(7) such that
H(7r) = f h(7)dr'. (A8)
1
Then, we choose H,, solution of Eq. (A6), such that
Hy(7)=eH02, (A9)

By convention, H(1)=0 and H,(1)=1. Equation (A7) can be
integrated leading to

f(y, T) =f(y, 1)eH(T)/Ze—(l/Z)HZ(T)yz,

where we have defined

(A10)
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Hz(T)=J Hl(r’)zdf’:f eMar . (A1)
1 1

Returning to original variables, we obtain

(2)(5, 7') = (2)1< )eH(T)/Ze—(1/2)[H2(T)/H%(T)]§2‘ (AIZ)
Hl(T)
We now observe that
H2(T) JT H( ) H( r) 1 >
—— = """y = —x(7), Al3
e 2)(( ) (A13)

where x(7) is the function introduced in Eq. (39). Therefore
the general solution of Eq. (Al) in Fourier space can be
written

f )—(1/4 T)§2 (A14)

e H(7) ¢1(H1( D
)

Defining

q(2) = 1(H,(1)z) <~ 4(§) = o )¢1<

(A15)
g(2) = G(e/x(1D) < 8O =x(DG(x(DH,  (Al6)
where
G)=e? < G(é) = 1Fe_§2,4’ (A17)
VT
we can rewrite Eq. (A14) in the form
Jm

(&7 = —) 4(9)g(8). (A18)

Taking the inverse Fourier transform, we can express the
solution of Eq. (A1) as a convolution

’

F dz
Pz, T)—— q(z—z')g(z’)z—, (A19)
v

x(7)

or, equivalently

+00

$an=—=| e BH - x(DDdr. (A20)

NTJ —o

By direct substitution, we can check that Eq. (A20) is indeed
solution of Eq. (Al).

If ¢,(z)=7(z) is a step function with 7(z)=1 for z<<0 and
7(z)=0 for >0, we immediately find that

d(z,7) =+ (A21)

1 ([ Z
e Xdx=d| — |,
N 2/x(7) X(T)

and we recover the result of Sec. III. Then, the general solu-
tion of Eq. (A1) can be put in the form
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1 +ee 2
¢<z,f>=¢(ﬁ) = f e (¢ - 1)

X (H,(7)[z = x(7)x])dx.

We introduce the new variable z’=z/x(7) and consider the
limit #— +0cc. The integral depending on the initial condition
is given by

(A22)

I= %Tf e—x2(¢)1 - p\N2H,(7)(z' —x)]dx. (A23)

We shall assume that ¢,(z) — 1 for z— —o0 and ¢,(z) — 0 for
z— 40, Then, if Hy(7)— +% for 7— +o, the function (¢,

—n)[2H,(7)(z' —x)] will be very peaked around x=z' and
we can approximate the integral by

12

e ¢ +00
I~ 2wt (1) L, (- )x)dx —0.  (A24)

Therefore, the condition that the solution of Eq. (A1) tends
asymptotically to the function (A21) for 7— +0oo is that (¢,
—7)(z2)=0 and

Hy(7) = f g7 — 4o (A25)
1

for 7— +. We can also write the general solution (A20) in
the form

1 f*w 2

- —[H(7)z - x] /2H2(T)¢ (x)d.

— e x)dx.
V27H,(7) J !

P(z,7)
(A26)
Returning to original variables, we get
u(v,1)
1

+00
= horon f ¢~ COLx— 0] =2V 2H20,(y 1/2)dly,

\'277H2(2t) —
(A27)

where x=x(v) and we have taken by convention x/{r=1/2)
=0.

APPENDIX B: ASYMPTOTIC BEHAVIOR OF EQ. (63)

Setting z=(7/2)y? we can rewrite Eq. (63) in the equiva-
lent form

22 pa=(y2)v?
L omw? f e (B1)

=
0 \NZ

With the change of variables y=—z+(y/2)v?, we get

12)0? -y
X ~ ie(Y/Z)vzf(y v Ldy.
Y 0 2y
1- W

Then taking the limit v — +%, we find that

(B2)
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+00
Y~ Le(y/Z)vzf edy ~ Le(y/Z)vz. (B3)
w

yv 0

APPENDIX C: CRITERION FOR THE MONOTONICITY
OF f(v,1)

In this appendix, we establish a criterion which guaran-
tees the monotonicity of f(v,7) for all times, if the distribu-
tion function is initially monotonic (decreasing). Let us first
rewrite the Fokker-Planck equation (18) in the form

a & d-1 \4g
—f=D—]:+ (D’ +DU' +—D>—f
ot v v ov
d-1
+|(DU") + —DU' |f. (C1)
v
Because of the positivity of the diffusion coefficient, a clas-
sical comparison principle states that if f(v,r) is initially
positive, it will remain positive for all times [23]. The idea is
now to apply the same argument to g=df/dv. Taking the
derivative of Eq. (C1) with respect to v, we get
dg P’g , , d-1
—=D—+\2D"+DU"+ —D
ot v v

%
v

d-1 DY\’
+ {D”+2(DU’)’ +—DU' +(d- 1)(—) ]g
U U

+{(DU’)”+(d—1)<DTU,>/}f. (C2)

If

(DU’)”+(d—l)(D—U), <0, (C3)
v

then

) & d
o8 SD—%+ (ZD’ +DU' +
at v

-1 \d
p)%
v v

d-1 D\’
+|D"+2(DU') + —DU' +(d-1)| — | |g.
v v

(C4)

Again we use a comparison principle and deduce from this
inequality that if g(v,7) is initially negative, it will remain
negative for all times. Therefore, if f(v,7) is initially decreas-
ing, it will remain decreasing for all times if the criterion
(C3) is satisfied. This criterion is just a sufficient condition of
monotonicity.

Let us give some particular examples of application. In
the case of a quadratic potential U(v)=v?/2, the criterion
(C3) becomes

(Dv)"+(d-1)D"<0. (C3)

For a diffusion coefficient of the form D=v"%, we find the
condition a<d. In particular, for the case a=d=3, the cri-
terion is satisfied. We can check that the criterion (C5) is also
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satisfied for all v for the diffusion coefficient (7a) corre-
sponding to the Coulombian (or Newtonian) potential of in-
teraction. Alternatively, for a diffusion coefficient of the form
D=e"’”2, we find that the criterion (C5) is not satisfied for
large values of v [more precisely v>(d+\Vd>+8v)/4y].
Therefore, the profile f(v,7) can be nonmonotonic even if the
initial condition is monotonic, as in the case of Fig. 3.

APPENDIX D: GENERAL SOLUTION OF EQ. (109)

In this appendix, we show that Eq. (109) can be solved
explicitly. First of all, we note that it can be written

(U'(v)—dv;l>R—R’(v)=Ax+B. (D1)

Since R=dv/dx, we obtain

(U’(v) - d;—l - I;((:)) )dv = (Ax + B)dx, (D2)

which leads to

e VOd-1R(p) = Ke (W2 +Bx] (D3)

where K is a constant. Equation (D3) can again be integrated
into

PHYSICAL REVIEW E 72, 061106 (2005)

+00 40
f e UWyd=lgy = K f el 2)yz‘LBy]dy. (D4)
v x(v)
For A=0, we obtain
+00 K
f eVl gy = —eBx, (D3)
v B

Substituting this relation in Eq. (D3), we recover the result of
Eq. (120). On the other hand, for A # 0, we get

+o0
f VMWl dw = K4 2—77632/2A<D[ \/z(E +x)},
v A 2\A

(D6)

where ®(x) is defined in Eq. (38). Substituting the foregoing
relation in Eq. (D3), we find that

e2U(v) +00
D(U) = WF j Ce_U(W)Wd_ldW 5 (D7)
v

where
F(x) = exp{-2(®7' ()}, (D8)

and C is a constant.
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